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Abstract- One of interesting matter issues in branching process is the computation of probability and the time of 
process generation extinction. In this article we initially obtain the time of process extinction with this assumption that 
the offspring distribution is geometric. Since this distribution depends on the mean of offspring, eventually we represent 
estimation for the mean by Monte-Carlo Method. 
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1. Introduction 
 

In branching process, the random number of the initial 
particles produces the higher number of the same or 
different kind of particles. They in turn create the second 
generation and the process of reproduction continues as 
the same way. The number of offspring of each 
generation is not previously obvious and will be 
determined randomly. We indicate the number of existing 
particles in each generation of process by , 0,1,2,...iZ i   

and suppose that each particle based on probability mass 
function  , 0,1, 2,...kq k   reproduces independent from 

themselves and parent particles. More specifically, if 
consider the random variable X as the number of 
offspring of each particle, then 

( ) , 0,1,...kP X k q k   . Suppose that 
2( ) , ( )E X m Var X    . In Galton- Watson branching 

process it is supposed that the life time of each particle is 
a time unit that this unit can be hour, day, week, year or 
every instant period of time and at the end of each 
particle lifetime, the reproduction occurs.  
In investigation of a branching process, whether 
extinction happens or not, knowing that how long it takes 
to be a generation extinct, for example, how long does it 
take to be an infectious disease extinct before becoming 
an epidemic disease? or how long it takes to a royal 
family extinct? 

The branching process theory is of specific important 
for mathematics, biologists and statisticians in terms of 
the estimation of the number of particles in each 
generation make it possible to determine the final 

extinction probability and the time of generation 
extinction.  
 
2. The generation extinction time of Galton-
Watson process with geometric offspring 
distribution 
 

If we have 0nZ    for a generation like n , but 

1 0nZ   , then the result of this event is the extinction 

of initial current generation. Now if n is the extinction 

probability of n th  generation, then given the 
probability generating function, we 
have ( 0) (0)n n nP Z G    , so that   is the final 

extinction probability of the chain of the smallest  non-
negative root of equation ( )G x x  and ( )G x is 

considered as the probability generating function of 
offspring distribution [1]. Suppose that T is the exact 
time of extinction, the distribution of T  is the number of 
previous generation before extinction, it means T n  
when generation n  is the first generation with 0 
member. In other words we have  

10, 0n nT n Z Z      

So, the distribution T  is the exact time of extinction 
that can be obtained from following relation:  

 
1 1 1( ) ( 0 0) (0) (0)                 (1.2)n n n n n nP T n P Z Z G G           

 
Because according to partitioning rule we have: 
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1 1( 0) ( 0 0) ( 0 0) (2.2)n n n n nP X P X X P X X                                

 

But the event  10 0n nZ Z      is an event 

that the process extinct by ( 1)n  -th generation and nth. 

Nevertheless we know that if the process be extinct 
in ( 1)n  - th generation, it will also be extinct in n  th 

generation. So 0nZ    is a redundant term, thus:
 

1 1 1( 0 0) ( 0) (0)n n n nP Z Z P Z G         
From equation (2.2) we get, 
 

1 1( ) ( 0 0) ( 0) ( 0 0)n n n n nP T n P Z Z P Z P Z Z          

11 )0()0(   nnnn GG   

 

from [4] we have ( )( ) ( ) ( (...( )...))n nG S G S G G S  . 

In general, it is not possible to find a closed form 

expression of ( )nG s  . the only non-trivial family size 

distribution that allows us to find a closed-form 

expression for ( )nG s    is the geometric distribution. 

Following term state this closed-form.  

Theorem (2.1): let { : 0}nZ n   be a branching process 

with family size distribution with parameter p  means 

( )X Geometric p , then the probability generating 

function is obtained as follows:  
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Proof: The proof for both p q  and p q   proceed 

by mathematical induction. We will give a sketch of the 
proof when 1 / 2p q       . The proof for p q   

works in the same way but is trickier. Suppose that 
1 / 2p q  , then 

0 0

1
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Using the branching process recursion formula  
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The inductive hypothesis is that:
 

( 1)
( )

1

n n s
G s

n ns

 


 
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Then we obtain that:     
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(2 ) ( 1)

(2 )( 1)

s n n

s n n
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So the judgment of theorem is satisfied for 1n  . 

Now using mentioned theorem and the relation (1.2) we 
obtain the time of generation extinction for branching 
process with geometric offspring distribution.  
While we have 1m  , 

2 2

1

1 1 1
( ) (0) (0)                   (3.2)

1 ( 1) ( 1)n n

n n n n
P T n G G

n n n n n n
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Let 1m   , then 
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On the other hand j-th moment of T  is obtained from 

the relation
0

( ) ( 1) (1 )j j j

n

E T n n 




      ,[3 ]. 

So, 
0

( ) (1 )n
n

E T 




   is the mean of extinction time, so 

that  
1) Finite if 1m  , 

2) Infinite if 1m  (despite extinction being 

definite) , if 2  is finite, 

3) Infinite if 1m  (because with positive 
probability, extinction never happens). 

 

3. Estimation m using Monte Carlo method 
 

Since the extinction time of T depends on m value, 
we introduce a graphic method to estimate m . From 
Martingale convergence theorem we 
have . ./ a sn

nZ m W , where W is a random variable 

[4]. So by taking the logarithm we obtain: 
ln ln ln .n

n nZ Wm Z W n m     

Therefore the chart ln nZ   tends to a straight line after 

several stages where for large n,
 

ln
ln nZ

m
n

   , is 

estimation for the slope of line. If the offspring 
distribution is a geometric process with 
parameter 0.3p  , figure 1 shows an example of a 

simulation of a branching process in 10 generations. 
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Figure1. A simulation of Galton-Watson branching 

processes when the offspring distribution is Geometric 
 

 Now to improve the estimation in lower generation 
using Monte Carlo method, we have plotted charts by 
repeating algorithm and drawing figure and averaging of 
generations  

In figure 2, the charts (b) and (c) indicate algorithm 
performing 10 and 100 times respectively.  

 
                                           (b)                                                                             

 

                                           (c) 
Figure2. A simulation of Galton-Watson branching 

processes when the offspring distribution is Geometric 
using Monte Carlo simulation  

 
The algorithm of Monte Carlo method to stimulate the 

branching process with geometric offspring distribution is 
as follows:  
1. Get  m for the number of interactions of the algorithm. 

2. Get n for estimate of nZ . 

3. Set k=1. 

4. Set j=1 and 0 1Z  . 

5. Set 0jZ  . 

6. Set 1i  . 
7. Generate X  according to Geometric distribution with 

the parameter p
log( )

1
log( )

U
X

q

 
  
   

.where U is a 

random number. 

8. Set j jZ Z X  . 

9. Set 1i i  , if 1ji Z   go to step 7. 

10. Set 1j j   , if j n  go to step 5. 

11. Set
 

, 1jsum sum Z k k     and if k m  

go to step 4. 

12. Obtain /sum k as Monte Carlo simulation nZ . 

13. As the end of algorithm, show the value of ln nZ . 

 
As it can be seen by increasing algorithm performing, the 
better result for ln m      estimation is obtained through 
the chart and the slope of charts in lower generation is 
calculable. Now if this function becomes exponential we 
obtain: 

ln
ln *

nZ
m n n

n ne e m Z    

Corollary: Using relation (3.2) and (3.4) we can obtain 
the extinction time of a branching process by geometric 
offspring distribution and since this distribution depends 
on the offspring mean, we present estimation of m using 
graphical method and stimulation of process. However, 
given to a time stimulation, the chart tends to a straight 
line in higher generation and we can provide better results 
to estimate m using Monte Carlo method and algorithm 
repeating.  
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